MAKING THE SUPERCOMPACTNESS OF κ INDESTRUCTIBLE UNDER κ-DIRECTED CLOSED FORCING

BY RICHARD LAVER

ABSTRACT

A model is found in which there is a supercompact cardinal κ which remains supercompact in any κ -directed closed forcing extension.

We assume familiarity with the theory of supercompact cardinals (see Kanamori-Reinhardt-Solovay [2]) and with Silver's results (see Menas [4]) about preservation of supercompactness in certain upward Easton extensions.

A partial ordering P is γ -directed closed if whenever $D \subseteq P$ is directed and Card $D < \gamma$ then there is a $p \in P$ with $d \le p$ for all $d \in D$. Clearly, it is consistent that κ -directed closed forcing can destroy the supercompactness of κ ; if the G C H holds below κ , make $2^{\kappa} > \kappa^+$ in the standard way and κ won't be measurable, if $2^{\alpha^+} = \alpha^{+++}$ holds for every inaccessible $\alpha < \kappa$, make $2^{\kappa^-} = \kappa^{++}$ in the standard way and κ will still be measurable but no longer supercompact.

Menas proved that for κ supercompact, $\lambda > \kappa$, $\lambda^{\kappa} = \lambda$ there is a κ cc partial order Q of power κ , such that upon forcing with Q followed by the standard partial ordering for making $2^{\kappa} = \lambda$, κ remains supercompact. We prove a strengthening of Menas' result.

THEOREM. If κ is supercompact, then there is a κ cc partial ordering Q with Card $Q = \kappa$, such that in V^o , κ is supercompact and remains supercompact upon forcing with any κ -directed closed partial ordering.

(Since the partial ordering $\{\emptyset\}$ is κ -directed closed, the supercompactness of κ in V^O is in fact derivable from the rest of the theorem.)

Let TC(x) be the transitive closure of x. If $\kappa \leq \lambda$ and U_{λ} is a supercompact ultrafilter on $[\lambda]^{<\kappa}$, let $M_{U_{\lambda}} = V^{[\lambda]^{<\kappa}}/U_{\lambda}$, and let $j_{U_{\lambda}}: V \to M_{U_{\lambda}}$ be the canonical embedding. (Will write $M_{U_{\lambda}} = M_{\lambda}$, $j_{U_{\lambda}} = j_{\lambda}$ without danger of confusion below.)

Menas [5] showed that if κ is supercompact then for every ordinal α there is an $f: \kappa \to \kappa$ and a supercompact ultrafilter U_{λ} on $[\lambda]^{<\kappa}$, for some λ , such that $(j_{\lambda}f)(\kappa) = \alpha$. The following lemma shows that some f works simultaneously in this way for all $x \in V$.

LEMMA. Let κ be supercompact. Then there is an $f: \kappa \to R_{\kappa}$ such that for every x and every $\lambda \ge \operatorname{Card} \operatorname{TC}(x)$, there is a supercompact ultrafilter U_{λ} on $[\lambda]^{<\kappa}$ such that $(j_{\lambda}f)(\kappa) = x$.

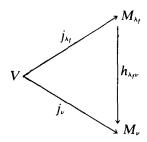
PROOF. Otherwise there is, for each $f: \kappa \to R_{\kappa}$, a least ordinal λ_f such that there exists an x with Card $TC(x) \le \lambda_f$, with $\langle x, \lambda_f \rangle$ a counter-example to the lemma for f. Let ν be greater than all the λ_f 's, and pick a supercompact ultrafilter U_{ν} on $[\nu]^{<\kappa}$.

Let $\Phi(g, \delta)$ be the statement that for some cardinal $\alpha, g : \alpha \to R_{\alpha}$, and δ is the least ordinal for which there exists an x with $Card(TC(x)) \le \delta$ such that for no supercompact U_{δ} on $[\delta]^{<\alpha}$ does $(j_{\delta}g)(\alpha) = x$. Since $[M_{\nu}]^{\nu} \subseteq M_{\nu}$, we have that for each $f : \kappa \to R_{\kappa}$, $M_{\nu} \models \Phi(f, \lambda_f)$.

Let U_{κ} be the projection of U_{ν} on κ . There is thus an $A \in U_{\kappa}$ such that for each $\alpha \in A$ and each $f' : \alpha \to R_{\alpha}$ there is a $\lambda_{f'} < \kappa$ such that $\Phi(f', \lambda_{f'})$.

Define inductively an $f: \kappa \to R_{\kappa}$ and follows. Suppose $\alpha < \kappa$ and $f_{\alpha} =_{\text{def}} f \upharpoonright \alpha$ has been defined. Then let $f(\alpha) = \emptyset$ unless $\alpha \in A$ and $f_{\alpha} : \alpha \to R_{\alpha}$. In this case there is an $x \in R_{\kappa}$ witnessing $\Phi(f_{\alpha}, \lambda_{f_{\alpha}})$; let $f(\alpha) = x_{\alpha}$ be such an x. We have the following relations: $(j_{\nu} \langle f_{\alpha} : \alpha \in A \rangle)(\kappa) = f$, $(j_{\nu} \langle \lambda_{f_{\alpha}} : \alpha \in A \rangle)(\kappa) = \lambda_{f}$, and $(j_{\nu} \langle x_{\alpha} : \alpha \in A \rangle)(\kappa) = (j_{\nu} f)(\kappa) = \text{some } x$ which witnesses $\Phi(f, \lambda_{f})$ in M_{ν} , and hence in V.

Let U_{λ_f} be the projection of U_{ν} onto λ_f . We claim that $(j_{\lambda_f}f)(\kappa) = x$, which will contradict that x witnesses $\Phi(f, \lambda_f)$, proving the lemma. Namely, in the canonical commutative diagram



we have that $h_{\lambda_{f^{\nu}}}$ is the identity on λ_{f} , Card $TC(x) \leq \lambda_{f}$, whence $x \in M_{\lambda_{f}}$ and $h_{\lambda_{f^{\nu}}}(x) = x$.

Thus
$$(j_{\lambda_f}f)(\kappa) = (h_{\lambda_f\nu})^{-1}((j_{\nu}f)(\kappa)) = (h_{\lambda_f\nu})^{-1}(x) = x.$$

PROOF OF THE THEOREM. Let $f: \kappa \to R_{\kappa}$ be as in the lemma. The partial order Q of the theorem will be an upward Easton extension of length κ . For $\alpha \le \kappa$, denote the ordering corresponding to the first α stages in the iteration by Q_{α} ; thus, $Q = Q_{\kappa}$. As we inductively define the Q_{α} 's, ordinals λ_{α} , $\alpha < \kappa$, are also chosen. At a limit stage γ we take, as usual, Q_{γ} to be those sequences in the inverse limit of $\{Q_{\beta}: \beta < \gamma\}$ whose supports are Easton sets of ordinals; let $\lambda_{\gamma} = \sup_{\beta < \gamma} \lambda_{\beta}$. To go from α to $\alpha + 1$, we put $Q_{\alpha+1} = Q_{\alpha} \otimes P_{\alpha}$, where P_{α} is defined as follows. P_{α} will be the term for the partial ordering $\{\emptyset\}$ unless

- (1) for all $\beta < \alpha$, $\lambda_{\beta} < \alpha$, and
- (2) $f(\alpha) = \langle P, \lambda \rangle$, where λ is an ordinal and P is a term in the forcing language of Q_{α} such that $\models_{Q_{\alpha}} P$ is an α -directed closed partial ordering.

When (1) and (2) hold we let $P_{\alpha} = P$, $\lambda_{\alpha} = \lambda$.

Let P be a term in the forcing language of Q_{κ} such that $\models_{Q_{\kappa}} P$ is a κ -directed closed partial ordering. We need to show that κ is supercompact in $V^{Q_{\kappa} \otimes P}$. Given a $\gamma \geq \kappa$, we find a supercompact ultrafilter on $[\gamma]^{<\kappa}$ in $V^{Q_{\kappa} \otimes P}$. Let λ be a cardinal such that $\lambda > \text{Card TC}(P)$ and $\models_{Q_{\kappa} \otimes P} \lambda \geq 2^{(\gamma < \kappa)}$. There is thus in V a supercompact ultrafilter U_{λ} on $[\lambda]^{<\kappa}$ such that $(j_{\lambda} f)(\kappa) = \langle P, \lambda \rangle$. Write $j_{\lambda} = j$.

In M_{λ} , $j\langle Q_{\alpha}:\alpha \leq \kappa \rangle$ is a sequence of length $j\kappa$ which, by the method of its construction, must start with $\langle Q_{\alpha}:\alpha \leq \kappa \rangle$; write then $j\langle Q_{\alpha}:\alpha \leq \kappa \rangle = \langle Q_{\alpha}:\alpha \leq j\kappa \rangle$, where $Q_{j\kappa}=j(Q_{\kappa})$. Now κ satisfies conditions (1) and (2) above (working in M_{λ} with jf in place of f), so $Q_{\kappa+1}=Q_{\kappa} \otimes P$ and for $\kappa+1 \leq \delta < \lambda$, $Q_{\delta+1}=Q_{\delta} \otimes \{\emptyset\}$. The remainder of the iteration (from Q_{λ} to $Q_{j(\kappa)}$) is by construction $\alpha \geq \lambda$ -closed forcing notion (in M_{λ} , and hence in N since N since N is obtained by following N is also a N-closed forcing notion. Thus N is obtained by following N is defined by forcing with a N-closed partial ordering which, living in N is a will call N.

Silver's argument will now give us what we want. Namely, since jP is λ -directed closed over $Q_{j\kappa}$, and since $\lambda > \text{Card TC}(P)$, we may pick a condition $s \in jP$ with Silver's property that

$$(*) s \vDash_{Q_{i\kappa}} \lesssim_{jP} \forall p \in Q_{\kappa} \overset{\sim}{\otimes} P (p \in G \Leftrightarrow jp \in G).$$

Now work in $V^{Q_{\kappa} \stackrel{\sim}{\otimes} P}$. Recall that $\lambda \ge 2^{(\gamma^{<\kappa})}$. Pick a sequence $r_0 \le r_1 \le \cdots \le r_{\alpha} \le \cdots (\alpha < \lambda)$ from R such that $r_0 = s$, and for any $X \subseteq [\gamma]^{<\kappa}$ there is an α such that r_{α} decides the statement $\{j\beta : \beta < \gamma\} \in jX$, furthermore, if $r_{\alpha} \Vdash \{j\beta : \beta < \gamma\} \in jX$

 $\gamma\} \in jX$ and F is a choice function on X, then there are δ and ν such that $r_{\delta} \Vdash jF(\{j\beta: \beta < \gamma\}) = j\nu$. The statement of these requirements is unambiguous because of (*). We conclude, by the usual argument, that the set $\{X \subseteq [\gamma]^{<\kappa}: \exists \alpha r_{\alpha} \Vdash \{j\beta: \beta < \gamma\} \in jX\}$ is, in $V^{Q_{\kappa} \otimes P}$, a supercompact ultrafilter on $[\gamma]^{<\kappa}$, giving the theorem.

It is a corollary of the indestructibility of the supercompactness of κ under κ -directed closed orderings, that κ is also supercompact in any V^P such that P is a κ -directed closed Easton or upward Easton class partial ordering.

REFERENCES

- 1. W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178.
- 2. A. Kanamori, W. Reinhardt and R. Solovay, Strong axioms of infinity and elementary embeddings, to appear in Ann. Math. Logic.
- 3. K. Kunen and J. Paris, Boolean extensions and measurable cardinals, Ann. Math. Logic 2 (1971), 359-377.
- 4. T. Menas, Consistency results concerning supercompactness, Trans. Amer. Math. Soc. 223 (1976), 61-91.
 - 5. T. Menas, A combinatorial property of P_sλ, J. Symbolic Logic 41 (1976), 225-234.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF COLORADO
BOULDER, COLORADO 80309 USA